Matrix Squares

By: David A. Sargent

In the scientific world these are called "Magic Squares" and were used for many clandestine and cryptic things. In this study I hope to demystify these things somewhat. But more importantly show a unique pattern in numbers that reveals these as a set of numbers that shows that there is a creator of the universe who placed in the number system elements or and clues to His presence.

Romans 1:20, "For the invisible things of him from the creation of the world are clearly seen, being understood by the things that are made, even his eternal power and Godhead; so that they are without excuse:"

This number system looks like it jumbles up numbers in random patterns. However that is not the case at all. The number set in it's usually order used in most every day math is:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
																					-

This is a useful and practical number line. However what I want you to see is a number system that is invisible, and existed "from the creation of the world" and it is "clearly seen"! How? You say. "by the things that are made" it is made FROM the above number system. Why? You say. To show you God's "eternal power and Godhead".

The simplest Matrix Square is a 3×3 . But before we get started there are some elements of math we need to deal with. First the unknown numbers and the variable or changeable or changing numbers must have a character SO the Matrix Square number is known as the "delta number" and we will be using the Greek Letter " Δ " for this. This would mean that the Δ in a 3×3 Matrix Square is 3. So If $\Delta = 3$ then you know this is a 3×3 Matrix Square. Now what is a Matrix Square? Simply put it is a set of numbers in a square where all rows, columns and both main diagonals equal the same number. That number I will refer to as the Matrix Number and the character used will be the Greek letter " μ ". So that the statement can be written in a formula:

This formula is used by the scientific world to understand the concept I got this from a lecture by Prof. Edward Brumgnach¹ of what they call the Magic Squares. However it is using my symbols. I

have before seeing this formula come up with my own formula for this and it looks like this:

if	Δ	=	4			
			3			
	_	Δ	+	Δ	_	24
μ	-		2		_	54

What is strange here is the similar formula used above should not actually come out the same it seems because there is an added 1 to the equation. And where my formula cubes the delta, then adds the delta and divides that

subtotal by 2. I like my formula better. Because it is my own formula? Yes and no! It is a cleaner formula in respects to the usage of parenthesis "()" needed. In the excel spreadsheet function this looks like this: = $((\Delta^3)+\Delta)/2$; while Brumgnach calculation would look like this: = $(\Delta^*(\Delta^2+1))/2$

¹ Prof. Edward Brumgnach – Dec. 2, 2009 https://www.youtube.com/watch?v=6fedjvyRt5w

Of course I am using the cell references: =((($E13^J12$)+E13)/I14) Which relates to the cells used.

This allows a change to the cell where Δ is to accommodate any size Matrix Square. And we will be dealing with this sort of thing when we construct our 3×3 Matrix Square for the Start Number " Σ " and Incrementation Number " $\tilde{\iota}$ ". This is for the construct of a Dynamic Matrix Square. The formula for this is too complicated to adjust our basic formula so that will be seen only in the actual Matrix construct.

The basic Matrix Square is a 3×3 where the given $\Delta = 3$. So this is what that looks like given:

Γ		2								3			
L	=	5	if	٨	_	2			Λ	т.	۸		
ï	-	2		Δ	-	5	11	=		т			15
l	-	J					μ			2		_	13
										2			

We will start with an array of 9 numbers in a 3×3 box of boxes:

1	2	3	
4	5	6	
7	8	9	

As you can see each box contains only one of the numbers of this set in order from left to right and from top to bottom. In the spreadsheet these are formulas pointing to the Σ for the first number as a fixed cell; and then every other cell is

pointing to the previous cell plus the \ddot{i} . So the cell with the number 1 is =Q7 and the number 2 cell is =I7+Q8 and number 3 cell is =J7+Q8, etc. Now when you CUT and PASTE these into a blank Matrix Square in a certain pattern you will arrive at the resulting μ from the formula.

4

2

The Blank 3×3 where you will place 1 in the center top cell then the first rule is that you are to place the next number in the diagonal up right from 1 and matriculate the 2 inside the construct in the associated cell and likewise to the 3.

At this point 4 cannot be placed in the cell where the 1 is. So the next rule applies to place that number below the previous. Then continue with the first rule unless you cannot place a number because a number is already in that cell.

						2														
	1				1				1					1					1	
																3		3		
										2	2				2					2
																7				
	1				1][1	6	5			1	6				1	6
3				3	5			3	5				3	5				3	5	7
4		2		4		2		4		2	2		4		2			4		2
													9							
	Γ		1	6	8		8	1	6			8	1	6		8	1	6		
	Γ	3	5	7			3	5	7			3	5	7		3	5	7		

2

4

2

4

9

Now you can add up the construct rows, columns and both diagonals to see that μ does resolve to the formula number 15. The formula however can be used to figure out the outcome without the design and construct of the matrix itself. So that any Δ used the outcome μ can be ascertained with very little effort.

4

			\$
8	1	6	15
3	5	7	15
4	9	2	15
15	15	15	Z5

2

This is done using this part of the spreadsheet:

							3			
if	Δ	=	3		_	Δ	+	Δ	_	15
				μ	_		2		_	13
							-			
							3			
if	Δ	=	4			Δ	+	Δ		24
				μ	=		2		=	34

By changing the value of Δ we have a new construct so instead of a 3 × 3 for example we can have a 4 × 4.

Now a bit about the odd and even Matrices: the pattern for odd Δ is not the same as for even Δ . The

odd Δ patterns are uniformly the same. The method above for the 3 × 3 is called the "Stair-Step" method. There are other methods that work for all the odd numbered Δ . This is true of some of the combined Δ where you have an odd Δ inside an even Δ . Like the 6 × 6 or the 12 × 12 which can be figured as an odd Δ inside and even Δ or an even Δ inside of an odd Δ . The double matrix holds either and odd Δ inside of an odd Δ or an even Δ inside of an even Δ . The 4 × 4 is NOT a double matrix because the 2 × 2 is NOT a matrix.

Before we get into larger matrices let's look at the above 3×3 and alter the " Σ " and the "i" numbers.

Σ	=	37
ï	=	37

			45 ⁵⁵
296	37	222	555
111	185	259	555
148	333	74	555
555	555	555	S _S

Here we see the cells reflect that change and the values of μ have also changed. However the total effect is retained. All rows, columns and both diagonals resolve to the same μ value. There are other things that can be done like a change how the \ddot{r} is used in relationship to the previous number or an added

 $i\bar{i}$ multiplier can be placed in the formula. If you just replace the + with the × then you would have all ones if your \bar{i} is multiplied by the Σ as 1 × 1. Instead the formula is best served as $\Sigma + \bar{i} \times i\bar{i}$. With 3 designations you can still at the base increment by 1 × 1. But you can also increment by 2 × 1 or by 2 × 2. This puts a third dimensional construct on the μ .

						550
Σ	=	37	296	37	222	555
ï	=	1	111	185	259	555
iï	=	37	148	333	74	555
			555	555	555	SS.

Here is the construct of this new dimensional with the added $i\vec{n}$.

This can be played with and viewed with endless possibilities as a dynamic matrix but the 3×3 is a bit limited in size; and the Stair-Step method is too simple for the more complex Δ . But the Stair-Step or the

Knight's Move patterns are limited to only the odd number Δ . The even numbered Δ are uniquely figured out patterns.

The even $\Delta 4$ is unique in the pattern and there are many constructs for the design. This is in an angular transversal where you can place the diagonal line on the 4 × 4 and place the numbers only on those squares and then go in the opposite direction and place the rest of the numbers.

Σ	=	1
ï	=	1

				34
16	3	2	13	34
5	10	11	8	34
9	6	7	12	34
4	15	14	1	34
34	34	34	34	34

Here is the arrangement where the numbers start lower right from right to left then up one row from left to right then up one row from left to right and then up one row from right to left. The placement cells are only the cells that line up with the two main diagonal cells. Then in reverse direction the rest of the

numbers are placed using the same sequence. What is unique to this design is that there are other

Top l	_eft:				Top I	Right:				1
16	3				2	13				3
5	10	=	3	84	11	8	=	3	4	>
										S
Botto	om Le	ft:			Botto	om Ri	ght:			8
9	6				7	12				I
4	15	=	3	84	14	1	=	3	4	>
										8
Cent	er:				Corn	ers				
10	11				16	13				
6	7	=	3	84	4	1	=	3	4	1
		ļ								
										┝
										\vdash
										┝
										┝─
										┝
										┝
										┝
										-
										-
										-
										-

hidden sub-matrixes inside this. As you know there is no such thing as a 2 \times 2 matrix. But this construct forces such a thing. Although it is not an actual 2 \times 2 there are some strange properties in this arrangement of the 4 \times 4. This same idea can be used for the 8 \times 8 and 16 \times 16.

The larger the number the more actual mbedded matrices you can create.

Now with these two matrices the 3×3 and the 4×4 we can make a 12×12 . One way is to imbed the 3×3 as 16; 3×3 in one 4×4 so that each of the 3×3 patterns are arranged in the respected 4×4 . The other arrangement that is an imbedded matrix in a matrix is just the opposite; where you place 9; 4×4 inside one 3×3 . The results of either of these are unique in design.

The outcome μ is the same in both; but the arrangement of numbers is very different. It is two very different solutions to the same problem.

This can also be used as a cypher to code a language. A code that uses a matrix algorithm would be hard to break; and the code key can be given as $\Delta 12 \sqrt[3]{4\mu} @ \Sigma7i9$. So the key can be given IN the very message as long as this key is cryptic. The larger the numbers of the Δ , $\Sigma \& i$ the larger the μ will be. In the case of the above key ($\Delta 12 \sqrt[3]{4\mu} @ \Sigma7i9$) this would be a 12×12 matrix using the 3 inside a 4 matrix at start 7 and increment by 9. In the regular 12×12 the μ value is 870; however when you start at 7 and increase by 9 each step the μ value is 7806.

In the 12×12 matrix the sub matrix of a 4×4 is seen with a Σ = 15 & \ddot{i} = 27. This also produces 870. If you add the extra $i\ddot{i}$ then

you can set the $\Sigma = 15 \& \ddot{i} = 27 \& \ddot{i}\ddot{i} = 1$; OR $\Sigma = 15 \& \ddot{i} = 1 \& \ddot{i}\ddot{i} = 27$.

												s10			
143	136	141	26	19	24	17	10	15	116	109	114	870			
138	140	142	21	23	25	12	14	16	111	113	115	870			
139	144	137	22	27	20	13	18	11	112	117	110	870			
44	37	42	89	82	87	98	91	96	71	64	69	870			
39	41	43	84	86	88	93	95	97	66	68	70	870	5		
40	45	38	85	90	83	94	99	92	67	72	65	870	Σ	=	1
80	73	78	53	46	51	62	55	60	107	100	105	870	l	=	<u>L</u>
75	77	79	48	50	52	57	59	61	102	104	106	870			
76	81	74	49	54	47	58	63	56	103	108	101	870			
35	28	33	134	127	132	125	118	123	8	1	6	870			
30	32	34	129	131	133	120	122	124	3	5	7	870			
31	36	29	130	135	128	121	126	119	4	9	2	870			
870	870	870	870	870	870	870	870	870	870	870	870	870			

When seeing this in the 4×4 you can tell that all of the above 3×3 are their own independent matrices as well. Here is the 4×4 represented by the same

15

27

1

Σ	=	15	Σ	=	
ï	=	1	ï	=	
ï	=	27	ï	=	

				870
420	69	42	339	870
123	258	285	204	870
231	150	177	312	870
96	393	366	15	870
870	870	870	870	870

Now we can see that each of the $3 \times 3 \mu$ are represented in each cell in this 4×4 . And each of the 3×3 can be seen here

below. They are sectioned and totaled. This shows a unique order, precision and absolute parallel between the relationships of all numbers. The magnitude of this order is infinite. And the same thing can be accomplished in the 3×3 of 9: 4×4 .

These are listed below:

			220				ଡି				22				3 ³⁰
143	136	141	420	26	19	24	69	17	10	15	42	116	109	114	339
138	140	142	420	21	23	25	69	12	14	16	42	111	113	115	339
139	144	137	420	22	27	20	69	13	18	11	42	112	117	110	339
420	420	420	R.O	69	69	69	69	42	42	42	×2	339	339	339	ઝેઝુ
			~ ²³				258				2857				204
44	37	42	123	89	82	87	258	98	91	96	285	71	64	69	204
39	41	43	123	84	86	88	258	93	95	97	285	66	68	70	204
40	45	38	123	85	90	83	258	94	99	92	285	67	72	65	204
123	123	123	<i>1</i> 23	 258	258	258	r ^y s	285	285	285	r _e g	204	204	204	204
											•				
			232				150				JT1				374
80	73	78	م ^{رم} 231	53	46	51	بې 150	 62	55	60	يم 177	 107	100	105	3 ⁵ 2 312
80 75	73 77	78 79	231 231	53 48	46 50	51 52	ی 150 150	62 57	55 59	60 61	یک 177 177	 107 102	100 104	105 106	312 312
80 75 76	73 77 81	78 79 74	231 231 231 231	53 48 49	46 50 54	51 52 47	50 150 150 150	62 57 58	55 59 63	60 61 56	5 177 177 177	107 102 103	100 104 108	105 106 101	312 312 312 312
80 75 76 231	73 77 81 5	78 79 74 12	231 231 231 231 231	53 48 49 021	46 50 54 021	51 52 47 021	50 150 150 150 750	62 57 58 221	55 59 63 221	60 61 56 121	x ^T 177 177 177 ^Z	107 102 103 E	100 104 108	105 106 101 815	می 312 312 312 312
80 75 76 231	73 77 81 E2	78 79 74 231	231 231 231 231 231 231	53 48 49 051	46 50 54 021	51 52 47 0 <u>5</u> 1	بي 150 150 150 י€ ي ي	62 57 58 22	55 59 63 221	60 61 56 221	5 177 177 177 7 3 5 8 6	107 102 103 27 8	100 104 108 718	105 106 101 21 8	۳۶ ^۲ 312 312 312 312 312
80 75 76 1E 2 35	73 77 81 E2 28	78 79 74 1E2 33	ب ب 231 231 231 231 ب ب % 96	53 48 49 051 134	46 50 54 0 <u>51</u> 127	51 52 47 0 <u>5</u> 1 132	بي 150 150 150 ري بي بي 393	62 57 58 22 125	55 59 63 221 118	60 61 56 221 123	\$ 177 177 177 177 2 5 5 6 366	107 102 103 212 8	100 104 108 212 80	105 106 101 6	م ² ⁄γ 312 312 312 312 312 312 312 312 312 312
80 75 76 1E 76 35 30	73 77 81 1E2 28 32	78 79 74 1E2 33 34	ا 231 231 231 ₹32 \$% 96 96 96	53 48 49 0 <u>5</u> 1 134 129	46 50 54 95 1 127 131	51 52 47 0 <u>5</u> 1 132 133	*** 150 150 150 ** * * * * * * * * * * * * * * * * *	62 57 58 121 125 120	55 59 63 22 118 122	60 61 56 121 123 124	بربر 177 177 ۲۶۶ بربر 366 366	107 102 103 21 8 8 3	100 104 108 CI E 1 1	105 106 101 6 6 7	እን 312 312 312 312 እ እ 15 15
80 75 76 122 35 30 31	73 77 81 E2 28 32 36	78 79 74 1E 73 33 34 29	 √³ 231 231 231 34 √2 √3 √6 96 96 96 96 	53 48 49 051 134 129 130	46 50 54 0 <u>5</u> 1 127 131 135	51 52 47 0 <u>5</u> 1 132 133 128	 ↓ ↓	62 57 58 121	55 59 63 121 118 122 126	60 61 56 62 123 123 124 119	\$ 177 177 177 177 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	107 102 103 215 8 8 3 4	100 104 108 215 1 1 5 9	105 106 101 212 6 7 2	312 312 312 312 312 35 312 35 15 15 15 15 15 15 15 15

												e ¹⁰			
128	115	114	125	16	3	2	13	96	83	82	93	870			
117	122	123	120	5	10	11	8	85	90	91	88	870			
121	118	119	124	9	6	7	12	89	86	87	92	870			
116	127	126	113	4	15	14	1	84	95	94	81	870			
48	35	34	45	80	67	66	77	112	99	98	109	870			
37	42	43	40	69	74	75	72	101	106	107	104	870	Σ	=	1
41	38	39	44	73	70	71	76	105	102	103	108	870	ï	=	1
36	47	46	33	68	79	78	65	100	111	110	97	870			
64	51	50	61	144	131	130	141	32	19	18	29	870			
53	58	59	56	133	138	139	136	21	26	27	24	870			
57	54	55	60	137	134	135	140	25	22	23	28	870			
52	63	62	49	132	143	142	129	20	31	30	17	870			
870	870	870	870	870	870	870	870	870	870	870	870	870			

The same thing can be done with this as with the 4×4 of 16: 3×3 . Next we will turn to a 6×6 to see an example of how this is a 2×2 with 4: 3×3 . But we will have to skew this to produce a true Matrix.

This is done by an adjustment in one direction that relates to two rows and both diagonals. The usage of the 3×3 will also be seen in the 9×9 which is a double add matrix.

In the 6×6 there are 4: 3×3 matrices. However, because there is no actual 2×2 matrix some minor adjustments are made. Here is the simple way to construct the 6×6 .

Start with a simple 3×3 . It is easy to make this using the aforementioned functions so that it will be easy to adjust one function and all the rest follow suit. Make a copy of this. And place three more copies like this:

8	1	6	8	1	6
3	5	7	З	5	7
4	9	2	4	9	2
8	1	6	8	1	6
3	5	7	3	5	7
4	9	2	4	9	2

Now you have 4 copies and think of these in this order: the top left is quadrant 1, the bottom right is quadrant 2, the top right is quadrant 3 and the quadrant bottom left is quadrant 4.

So you should have this order in mind for this next step and you will need to adjust the starting number of the quadrants 2, 3 & 4 so that they are a continuation of their previous quadrants

ending cell plus the increment number. So you should come out like this:

8	1	6	26	19	24
3	5	7	21	23	25
4	9	2	22	27	20
35	28	33	17	10	15
30	32	34	12	14	16
31	36	29	13	18	11

At this point you can now place the totals of all rows, columns and both diagonals. Doing this will help resolve the rest of the puzzle, as you will see that most of this puzzle has been resolved already with a few minor exceptions. Notice the ascending quadrants are in the order above. This cross-over works with one more 3 cell cross over from quadrant 1 to

quadrant 4; where 3 cells will swap numbers (total of 6 cells).

						165
8	1	6	26	19	24	84
3	5	7	21	23	25	84
4	9	2	22	27	20	84
35	28	33	17	10	15	138
30	32	34	12	14	16	138
31	36	29	13	18	11	138
111	111	111	111	111	111	57

As you can see the columns are correct; however the rows are off by exactly the needed reverse for the difference between 84 and 138 to make 111. Which is 54. The two diagonals are also in a similar dilemma being off by 108. This means that the diagonals are off by twice the amount of the rows. But there are three rows off. So we need to affect three rows and both diagonals with the least number of alterations. Seeing we need to minimally alter all three rows; we need to affect the diagonals with the alteration of these rows. We can do this by swapping the 8 with

the 35 of one corner and the 4 with the 31in the other corner diagonals then swap the center number 5 with the center number 32 which alters both diagonals. Adjust your sums to reflect these moved numbers and you have solved the 6×6 .

If you did this right retaining all the functions you should be able to adjust the Σ and/or the \ddot{i} and/or the \ddot{i} variables to see how that changes the number sequence and the new μ . Once you have created these matrices in a spreadsheet as dynamic matrices then you can place numbers in these variables and see what new things can be discovered. For instance this particular 6×6 when starting with 6 and incrementing by 6 gives a peculiar resulting μ :

						111		
35	1	6	26	19	24	111		
3	32	7	21	23	25	111	Γ	_
31	9	2	22	27	20	111	<u> </u>	_
8	28	33	17	10	15	111	1	=
30	5	34	12	14	16	111	11	-
4	36	29	13	18	11	111		
111	111	111	111	111	111	111		

Here is the end result of the natural 6×6 :

Notice the swapped highlighted cells and the outcome of the μ is 111.

An alteration of the Σ to 6 and the \ddot{i} to 6 gives the μ as 666.

This is a remarkable construct in light of the fact that this is a

 6×6 that starts with 6 and increases by 6!

Here is the altered $6 \times 6 @ \Sigma 6$: *i* 6: $\mu = 666$! The first time I saw that I thought that God had placed in the number system the prophetic numeric anomalies that will bring about His plan regardless what anyone does or says or thinks.

1

1

1

						666			
210	6	36	156	114	144	666			
18	192	42	126	138	150	666	-		
186	54	12	132	162	120	666	Σ	=	6
48	168	198	102	60	90	666	ï	=	6
180	30	204	72	84	96	666	ïï	=	1
24	216	174	78	108	66	666			
99	99	99	99	99	99	666			
9	9	9	9	9	9				

This is by far one of the more amazing things found in the matrices. This lines up with Revelation 13:18 which by the way is in verse 18. $3 \times 6 = 18$. What is stranger is that this number $18 \times 37 = 666$.

And $6 \times 6 = 36$; add up all the numbers 1 to 36 and you get 666!

This is what the passage actually SAYS to "...COUNT the number..." Revelation 13:18, "Here is wisdom. Let him that hath understanding count the number of the beast: for it is the number of a man; and his number is Six hundred threescore and six." Here is the COUNT:

"...it is the number of a man" and "...his number..." So the number of A MAN and it is HIS number.

1	2	3	4	5	6		
7	8	9	10	11	12		
13	14	15	16	17	18		
19	20	21	22	23	24		
25	26	27	28	29	30		
31	32	33	34	35	36	=	666

Also see Revelation 13:17, "And that no man might buy or sell, save he that had the mark, or the name of the beast, or the number of his name."

Revelation 15:2, "And I saw as it were a sea of glass mingled with fire: and them that had gotten the victory over the beast, and over his image, and over his mark, and over the number of his name, stand on the sea of glass, having the harps of God."

So this is the number of a man, his number, it is the number of his name, and has to do with his image, his mark and he is a beast person.

Humans are made of Carbon for the most part. The element is the 6th in the periotic chart².

	_																
1 H																	² He
з Li	⁴ Be											5 B	⁶ C	7 N	⁸ O	9 F	10 Ne
11 Na	¹² Mg											¹³ Al	¹⁴ Si	15 P	¹⁶	17 Cl	¹⁸ Ar
19 K	20 Ca	²¹ Sc	²² Ti	23 V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	²⁸ Ni	29 Cu	³⁰ Zn	³¹ Ga	32 Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr
37 Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
55 Cs	⁵⁶ Ba		⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	85 At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra		¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ Ds	111 Rg	112 Cn	113 Nh	114 Fl	¹¹⁵ Mc	116 Lv	¹¹⁷ Ts	¹¹⁸ Og
		-															
			57 La	58 Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	63 Eu	64 Gd	⁶⁵ Tb	66 Dy	⁶⁷ Ho	68 Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu
			⁸⁹ Ac	90 Th	91 Pa	⁹² U	93 Np	⁹⁴ Pu	95 Am	96 Cm	⁹⁷ Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr
				Th	e P	eric	odic	c Cł	nart	of	Ele	eme	nts				

The element Carbon exits as 3 known substances: amorphous, graphite and diamond.

Life cannot exist without Carbon; it is the second most abundant element in the human body to Oxygen.

Strange that the element that supports most all of our physical parts is the 6^{th} element Carbon that has 6 protons, 6 neutrons & 6 electrons³.

This 666 element is in all living organism not just in man. But

without it, life could not exist. So why does God use this as the number of the most evil person known to mankind? That is the mystery of iniquity found in:

2 Thessalonians 2:7, "For the mystery of iniquity doth already work: only he who now letteth will let, until he be taken out of the way."

So not to get into this too much further as this is a study about the Matrix Squares; the number 666 is related to the person who is the mystery of iniquity and in that context:

2 Thessalonians 2:1-4, "Now we beseech you, brethren, by the coming of our Lord Jesus Christ, and by our gathering together unto him,

That ye be not soon shaken in mind, or be troubled, neither by spirit, nor by word, nor by letter as from us, as that the day of Christ is at hand. Let no man deceive you by any means: for that day shall not come, except there come a falling away first, and that man of sin be revealed, the son of perdition; Who opposeth and exalteth himself above all that is called God, or that is worshipped; so that he as God sitteth in the temple of God, shewing himself that he is God."

He will be revealed before "...the coming of our Lord Jesus Christ, and by our gathering together unto him..."

This mystery will be seen by those that know their Bibles. Those that do not know their Bibles will fail to see who this is and follow him. So paying attention to certain things that you really don't care about like "numbers" or "patterns" because it is just boring or you say you can't understand it; will only lead to your deception.

² Periodic Table of the Elements graphic: https://education.jlab.org/itselemental/tableofelements.png

³ Carbon Atom graphic: https://ascensionglossary.com/images/thumb/f/fd/CarbonAtom.jpg/300px-CarbonAtom.jpg

These matrices form a pattern not just a theory but practical application. The Church is told that in 2 Thessalonians; not the Tribulation Saint.

Those that go into the Tribulation could have escaped it had they just paid attention to these things.

Now back to the matrices. In studying these number patterns remember we are dealing with a mathematic anomaly that is absolute as much as 1 + 2 = 3. It is the science of all sciences; used in all sciences and is the basis for all things. The element of Time (not included on the periodic chart) is a constant. It is an absolute and holds one of the keys to mathematics. The first thing that was created was time, then space (in the sense of a place to put stuff) then mater (the stuff placed in space). But without time, the space and the mater could not exist.

Genesis 1:1, "In the beginning God created the heaven and the earth."

- 1. Time: "beginning"
- 2. Space: "heaven"
- 3. Matter: "earth"

These represent the tripartite nature of all things created. From here you are going to be dealing with things in 3. Time for instance has 3 elements:

- 1. Past
- 2. Present
- 3. Future

Space also has 3 elements and constitutes the multitudes of threes IN this space and the construct of matter; we call this 3 dimensional:

- 1. Length
- 2. Width
- 3. Depth

The last of these is the matter; which because it fits IN the space also has those three elements. Also all mater goes THROUGH time and so the elements of time are involved in Mater. But there are a vast number of other threes that are in matter.

- 1. Gas
- 2. Liquid
- 3. Solid
- 1. Animal
- 2. Vegetable
- 3. Mineral
- 1. Energy
- 2. Frequency
- 3. Vibration

- 1. Light
- 2. Sound
- 3. Particle

And this list could go on and on. The 3, 6, 9 set that Nikola Tesla thought was the key to the universe was just a drop in the bucket. What he missed was that this sequence LEADS to that key. In essence he found the key TO the key!

There is ONE number that is the KEY and there are a set of numbers that are the door. They are all multiples of that ONE number and 3.

Σ

ï

ïï

=

=

=

1

1

1

	175	175	175	175	175	175		175
	47	23	6	31	14	39	15	175
175	10	42	18	43	26	2	34	175
175	22	5	30	13	38	21	46	175
175	41	17	49	25	1	33	9	175
175	4	29	12	37	20	45	28	175
175	16	48	24	7	32	8	40	175
175	35	11	36	19	44	27	3	175
	175	175	175	175	175	175	175	175

To see this we need a 7×7 Matrix Square.

This construct of the 7×7 Matrix is by using the Knight's Move from Chess. It is the "up 2 right 1" move for the first rule; and when a cell already had a number then you go two cells

to the right; then continue with the Knight's Move. Starting in the cell just to the right of center and ending in the cell just to the left of center. This configuration allows for the panoramic diagonals to resolve to the same μ . And with $\Sigma = -777$ and $\ddot{r} = 37$ we see that $\mu = 777$.

	777	777	777	777	777	777		777				This same configuration
	925	37	-592	333	-296	629	-259	777				can be achieved
777	-444	740	-148	777	148	-740	444	777				by
777	0	-629	296	-333	592	-37	888	777	Σ	=	-777	-
777	703	-185	999	111	-777	407	-481	777	ï	=	37	$\Sigma = -777$ and $i\bar{i}$
777	-666	259	-370	555	-74	851	222	777	iï	=	1	= 37 we see the
777	-222	962	74	-555	370	-518	666	777				same $\mu = 777$.
777	481	-407	518	-111	814	185	-703	777				
	777	777	777	777	777	777	777	777				This is actually an amazing thing because
												while <i>i</i> adds <i>ii</i>

multiplies. It is because the arrangement of \vec{i} before \vec{i} that this works, because \vec{i} is first multiplied by \vec{i} and then added to Σ . So the results are the same if either \vec{i} or \vec{i} are = 1.

Now look what happens when $\Sigma = -888$ with the same value for \ddot{i} :

		0	0	0	0	0	0		0				This result shows some
		814	-74	-703	222	-407	518	-370	0				sort of enigma
()	-555	629	-259	666	37	-851	333	0				in the number
()	-111	-740	185	-444	481	-148	777	0	Σ	=	-888	37 and the triple
()	592	-296	888	0	-888	296	-592	0	ï	=	37	repetitive digit
(C	-777	148	-481	444	-185	740	111	0	iï	=	1	numbers
(C	-333	851	-37	-666	259	-629	555	0				(TRD)
(C	370	-518	407	-222	703	74	-814	0				(110).
									0				This is because
		0	0	0	0	0	0	0	U				37 is a factor of
													all the TRD

numbers and holds a "center of the universe" wrap around in this construct:

1	х	3	=	3	&	3	х	37	=	111	&	1	+	1	+	1	=	3	÷	3	=	1
2	х	3	=	6	&	6	х	37	=	222	&	2	+	2	+	2	=	6	÷	3	=	2
3	х	3	=	9	&	9	х	37	=	333	&	3	+	3	+	3	=	9	÷	3	=	3
4	х	3	=	12	&	12	х	37	=	444	&	4	+	4	+	4	=	12	÷	3	=	4
5	х	3	=	15	&	15	х	37	=	555	&	5	+	5	+	5	=	15	÷	3	=	5
6	х	3	=	18	&	18	х	37	=	666	&	6	+	6	+	6	=	18	÷	3	=	6
7	х	3	=	21	&	21	х	37	=	777	&	7	+	7	+	7	=	21	÷	3	=	7
8	х	3	=	24	&	24	х	37	=	888	&	8	+	8	+	8	=	24	÷	3	=	8
9	х	3	=	27	&	27	х	37	=	999	&	9	+	9	+	9	=	27	÷	3	=	9

This unique property that is found in the sequences of 3, 6 & 9 conjoined with the number 37 shows a remarkable "coincidence" that could not be accounted for by sheer accident. This shows viable evidence of a master mind behind numbers: an intelligent creator whose number is 37 that is a number for Triune Godhead. It accounts for the multitude of anomalies associated with the number 37. Notice the 3, 6 & 9 repeat of the Digitary math in the sequence.

See my study called: "Numerology - 37th" located at http://biblestudies.av1611kjb.org

Other related studies include:

- Numerology Dynamic Magic Square Matrices
- Numerology Numerology of Numbers and Their Matrices
- ▶ Numerology The 54 Fruits of The Spirit & 9
- ▶ Numerology The Breakdown of 6, 7, 37, 111 & 666
- Numerology Triple Repetitive Digits

david@av1611kjb.org